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CALCULATION OF DOUBLE-LUNAR SWINGBY
TRAJECTORIES: I. KEPLERIAN FORMULATION*
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ABSTRACT

Scientific satellites may require translunar orbits aligned with the Sun-

Earth line, with most of the period spent in either the sunward or antisun-

ward direction. To maintain alignment, the orbit's line of apsides must

rotate at a rate equal to mean angular motion of the Earth about the Sun.

To maintain this rotation of the line of apsides by use of fuel onboard the

spacecraft is prohibitively expensive. Farquhar and Dunham (Refer-

ence 1) proposed a method for maintaining the desired alignment by gain-

ing momentum at the expense of the Moon during a close approach--a

lunar swingby--as the spacecraft passes beyond lunar orbit, then return-

ing the momentum at the second lunar swingby as the spacecraft returns

within the lunar orbit. The cycle of double-lunar swingbys may then be

repeated. Dunham (Reference 2) presented the orbit parameters neces-

sary to achieve double-lunar swingby orbits which will maintain Sun-Earth

line alignment. The details of the Keplerian approach to calculation of

these parameters are presented. Methods for solution of the necessary

equations for these parameters are presented.

" This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. DEFINITION OF A DOUBLE-LUNAR SWINGBY CYCLE

Consider a Keplerian orbit about the Earth with its line of apsides pointing toward the

Sun. After 3 months, ignoring perturbations, the line of apsides would be perpendicular

to a line drawn from the Sun to the Earth; to maintain its Sun-pointing line of apsides,

this line must rotate about the Earth at a rate equal to the mean angular motion of the

Earth about the Sun. Farquhar and Dunham (Reference 1) described a method to achieve

such an apsidal rotation rate for translunar orbits. The method requires two close lunar

encounters, swingbys, per cycle. The first swingby occurs as the spacecraft, moving away

from the Earth, crosses the lunar orbit with the Moon to its left. This "trailing edge"

swingby increases the energy of the spacecraft's orbit and hence increases the semimajor

axis. We call the orbit with the larger semimajor axis the outer-segment loop or simply

"outer loop," and the original orbit the inner-segment loop or simply "inner loop." The

spacecraft's outer loop orbit period is such that more than one lunar month passes follow-

ing the first lunar swingby before the spacecraft again crosses the Moon's orbit, this time

moving toward the Earth. The second swingby occurs at this crossing, again with the

Moon to the left of the spacecraft. Thus a "leading edge" swingby occurs, removing

energy from the spacecraft's orbit and reducing its semimajor axis to its original length--

the length before the first lunar swingby. Next, slightly less than one lunar month passes,

the spacecraft is now ready for another outward crossing of the Moon's orbit, and the

Moon and spacecraft are at the same relative position as for the first lunar swingby. This

defines one complete "double-lunar swingby" cycle. Note that at the first swingby the

Moon's pull rotated the line of apsides counterclockwise. The second swingby, occurring

as the spacecraft moved toward the Earth, also resulted in a counterclockwise rotation of

the line of apsides. If, then, the sum of these two rotations divided by the time for one

complete cycle equals the mean angular motion of the Sun, the spacecraft's line of

apsides will continue its sunward alignment.

Figure 1 shows one complete double-lunar swingby cycle. The Moon's positions at the

first, second, and third (first) swingbys are shown as $1, $2, and $3. The true anomaly of

the spacecraft at the time of the first swingby is shown as fx for the inner loop orbit and

fo for the outer loop orbit. Thus the apsidal rotation is 2(fl - fo), and occurs in a time

equal to the time from $1 to $3. We can then write the first necessary condition for a

lunar swingby as

Acb = 2(fi - fo) 2zr = 0
2ta + ts TE

t
rate of rotation mean angular
of line of apsides motion of Earth
for one double- about the Sun
lunar swingby
cycle

(1)
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Figure 1. A Double-Lunar Swingby Trajectory
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where

Y E =

2ta =

ts =

Earth's orbital period

time spent in outer loop from $1 to $2

twice the time from perigee of inner loop to $1, plus one complete
inner loop period

Two more conditions relate the spacecraft's orbital parameters to the Moon's motion:

( rm))AO1 = 2(fi - fo) + 2 - fI /_

t
angle traveled by Moon from
S_ to $2 expressed in inner and
outer loop true anomalies

2_
- -- (2ta) = 0

Tm

t
angle traveled by Moon
(rood 2_) between Sl
and Sa expressed in
outer loop time, 2ta,
from S_ to S2

(2)

A02 = (2(_r- fi r_m-))- (27r 2_r )Tm t s = 0 (3)

t t
angle traveled by angle traveled by
Moon from $2 to Moon from S2 to
S3 expressed in S3 expressed in
inner loop true terms of inner

anomaly loop period

where

Am = radius of Moon's orbit

rm = swingby distance of spacecraft from Moon

Tm = Moon's orbital period

These three equations specify the geometry constraints for a complete double-lunar
swingby cycle.

2. REFORMULATION OF THE NECESSARY EQUATIONS

In this Keplerian formulation, the transfer from the inner orbit segment to the outer orbit

segment is assumed to occur instantaneously when the spacecraft crosses the lunar orbit.
We also assume a circular lunar orbit.
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The three equations may be expressed solely in terms of three variables; ai, Pi, and a,
where

a

a i

Pi -

bend angle; angle through which velocity of spacecraft is changed

at $1

apogee distance of inner loop

perigee distance of inner loop

The three nonlinear equations may then be solved numerically to determine these three

unknowns. A description of the solution process is given in Section 3. We now show all

the relations which allow Equations (1), (2), and (3) to be expressed in terms of a, ai,

and Pi.

For Equation (1), we require expressions for fl, fo, ta, and ts in terms of a, ai, and

Pi.

/ZE = gravitational parameter for Earth

1

al = _- (ai + Pi) = semimajor axis of inner loop

e I =
(ai - ai)

ai
- eccentricity of inher loop

COS fI =
ei

[sin fi'_
fi = tan -1 _._j = true anomaly of inner loop at $1

Vs = E -- , spacecraft speed at $1, in inner loop
at./J

Vm -

2zt Am

Tm
, velocity of Moon in its orbit

"N

Vxm = -V m sin fl L

JVy m = + Vm COS fl

x and y components of Moon's velocity
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Vx = - sin fl

vy = el + cos fl

vx_= vs Vx2 + v_)1/2

{ v, }Vys= vs (v_ + v_)1/2

v×o = V×m + (V×s - V×m) COS a - (vys - Vym) sin a_

JVyo = Vym + (Vys - Vym) COS a + (v×s - V×m) sin a

rotation of spacecraft

velocity vector with

respect to Moon by

an angle a

2 x 1/2
Vo = (V2xo + Vyo) , spacecraft speed, at $1, in outer loop

v_'_._,]-l, semimajor axis of outer loop
#eJ

E, 2 tan-_ {(1- e_) 1/2 _-}
= -- tan , eccentric anomaly of inner loop at $1

+ e_j

rx = Am Cos fl

ry = Am sin fl

h = rx Vyo - ry Vxo, angular momentum of outer loop orbit

/h(rx V,,o + ry Vyo)_,
fo = ta n-1 I. h2- ] /2E _-m J true anomaly of outer loop, at Sl

eo = {1
h 2 "_l/z-- • , eccentricity of outer loop

btE aoJ

-- tan , eccentric anomaly of outer loop, at S_
Eo = 2 tan -1 1 + eoJ
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2_ 3/2

To = -_E _0 , period of outer loop

2_ 3/2

T_ - _ a I , period of inner loop

1 Eo - eo sin Eo

t_ = _ To - 20z/To
, time from $1 to apogee of outer loop

ts= 2( EI-e*-2_/_sinE[} + T I, one inner loop period plus twice the time from
perigee of inner loop to $1

For Equation (2), we express rm in terms of previously defined quantities.

/-/m = gravitational parameter for Moon

Vm = {(Vxs - Vxm) 2 + (Vy s - Vym)2} 1/2

r m -  m(11v2 sin a
2

For Equation (3), all variables have been related previously to a, ai, and Pi-

3. SOLUTION OF THE EQUATIONS

Writing the equations as

A_ = fl (a, ai, Pi) = 0

a01 = f2 (a, ai, Pi) = 0

A02 = f3 (a, ai, Pi) = 0

or

1_(X-') = f2 (X-')i_ = 0, X ---- a i

f3 (x-').J Pi

we use the Newton-Raphson method to find the required solution vector, :¢.
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The method is to guess a new iterate, _N+l, from the previous iterate, _N, by

where J (K) is the Jacobian matrix

In fact, we define

_N+I = ;(N

and write

j

J(x-)

r Of 1

Oxl

0f2

0Xl

0f3

0xl

of 1

Ox2

of2
Ox2

Of 3

Ox2

Ofl

0x3

0f2

0x3

0f3

Ox3 •

_N*I -- -- (_N+I -- _N)

j(_N) £N+I = 1_ (_N)

This linear system can be solved for _N+I once J and l_'are evaluated at KN. Then :_N+1

is found from

_N+I = _ _N+I + _N

The partial derivatives are estimated numerically via central differences

0fi fi (Xj + hij) - fi (xj - hij)

0xj 2h U

The step size hij is chosen such that

fo ,I]hij[ _ ---- ¢-_ [fi[

where • is a machine constant. For IBM double precision,

single precision, • = 9.5 x 10 -7 .

• = 2.2 x 10 -16 For IBM
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4. SAMPLE CALCULATION

Computer output for a sample solution of a double-lunar swingby orbit is shown in the

appendix. First, the initial guess values for the three independent variables are shown.

a = 0.2 radians = 11.46 degrees

ai = 700,000 km

ei = 40,000 km

Next, values for h, used to calculate partial derivatives, are displayed. Then the results of
each iteration are shown in the form

J (x-') £ (x-*) = l_ (x-')

After seven iterations, the final values of the independent variables are shown: a =

19.4205 degrees, ai = 549,888 km, and Pi = 37,432 km. These results agree with those

given on page 2-2 of Reference 2.
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APPENDIX -- SAMPLE DOUBLE-LUNAR SWINGBY CALCULATION

The following shows details for a solution of a double-lunar swingby orbit.

PERIOD OF SATELLITE: Z7.3Z17 DAYS,
PERIOD OF PLANET: 365.Z500 DAYS,

PLANET GRAV. PARAMETER: 3.?B6E÷O5 KH_w3/SEC**Z,
SATELLITE GRAV. PARAMETER: ( 3.986E+05 / 81.3700) KH_*3/SEC*_Z

SATELLITE ORBITAL RADIUS: 384399. KH

INITIAL VALUES FOR X :

Z.OOOOOE-D1 7.OOO00E+O5

ERROR TOLERANCES FOR SUCCESSIVE ITERATES :

1.OOO00E-O6 1,O00OOE-O6

4.OOOOOE÷04

1.OOOOOE-06

FROM HSET, H VALUES ARE:

2.OOO00E-06
S,OOOOOE-07
6.75000E-06

3.SOOOOE+OO
4.37500E-01
B.75000E-01

Z.O25OOE+O0
Z.OZSOOE+OO
4.0OOOOE-O1

w**ww ITERATION NUMBER I **_*w

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I 3.02452E-07 -Z.3OIO1E-13
I
I -4.53911E+01 -4.36530E-0_
I
J 1.13706E÷00 1.Z4872E-05

Z. ZBO45E-13 I I Z( 1) I
I I I

5. 97961E-06 I I Z( 2 } I

I J J2. 7250ZE-05 ] Z! 3 ) I

l-9.61618E-08 I
I I
I-Z.5162OE+OO I
I I
I 1.74578E+00 I

IS Z : -1.44445E-01 Z.O4596E+05 -2.36627E÷04

ITERATION 1, X : 3.44445E-01
F-NORM = 2.62326E÷00

4.95_06E+05 6.366Z7E+04

**w*w ITERATION NUMBER 2 ww_ww

THE SOLUTION TO THE FOLLONING MATRIX EQUATION,

I 5.S1903E-07 -3.Z9366E-13
I
[ -I.IS460E÷Ol -3.90971E-05
I
I 7.5548ZE-01 1.17588E-05

3.670B1E-13 I I Z(1) I
I I I

Z. ZO171E-06 I [ Z( Z) [
I I I

Z. 18728E-05 I J Z[ 3) I

I 4.0043BE-OB J
I I
[ Z.61698E+OO [
I I
I-6.Z8797E-03 I

IS Z : 8.56683E-03 -6.74558E+04 3.56809E+04

ITERATION Z, X 3.35878E-01
F-NORM = 8.89039E-01

S.6Z860E÷05 Z.79819E+04
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ww*** ITERATION NUMBER 3 **w**

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I Z.35S13E-07 -6.67579E-13 6.72816E-13 I I Z(1) I
I I I I
I -3.3ZO48E+O1 -6.Z3036E-05 1.391Z4E-05 I I Z(Z) I
I I I I
I 4.51755E-01 1.1036ZE-05 2.66817E-OB I I Z(3) I

I-1.38927E-08 I
I I
I-7.87616E-01 I
I I
I-I.O14Z3E-01 I

IS Z : -3.44420E-03 1.Z4680E+04 -8.908ZZE{03

ITERATION 3, X : 3.39323E-O1
F-NORH = 5.10358E-OZ

B.5037ZE+05 3.68901E÷0_

ww*** ITERATION NUMBER 4 ****w

THE SOLUTION TO THE FOLLONING MATRIX EQUATION,

I _'.90579E-07 -5.71015E-13 5.48010E-13 I I Z(1) I I-4.6ZI81E-IO I
I I I I I I

5.00948E-01 1.11918E-05 2.51765E-05 I Zl3) I -8.01032E-03

IS Z • 3.71385E-04 4.808Z4E÷OZ -5.39Z98E+OZ

ITERATION 4, X : 3.38951E-01
F-NORM = 2.36043E-04

5.49891E+05 3.74Z94E÷04

w*_** ITERATION NUMBER 5 *****

THE SOLUTION TO THE FOLLONING MATRIX EQUATION,

I Z.94573E-07 -5.68936E-13 5.40713E-13 I I Z(1) I
I I I I
I -Z.7535ZE+O1 -5.71133E-05 9.10926E-06 I I Z(Z) I
I I I I
I S.OS4Z4E-O1 1.1ZO43E-OS Z.SIO6SE-O5 I I Z(3) I

I-3.Z1530E-12 I
I I

= I-2.13269E-04 I
I I
I-Z.Z774ZE-O5 I

IS Z : -1.49764E-08 3.35773E÷00 -Z.40526E÷O0

ITERATION 5, X : 3.389B1E-OI
F-NORM = 4.30Z44E-09

5.49888E÷05 3.74318E+04
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***** ITERATION NUMBER 6 *****

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I 2.94591E-07 -5.68930E-13
I
I -2.75337E+01 -5.71117E-06
I
I 5.05440E-01 1.12043E-05

S.40685E-13 I I Z(1) I
I I I

9.10624E-06 I I Z(2) I
I I I

Z.5106ZE-05 I I Z(3) I

l-4.24080E-17 I
I I
]-3.82426E-09 I
I I
I-4.7B174E-lO I

IS Z • Z.49S61E-11 4.83695E-05 -4.11348E-05

ITERATION 6, X : 3.38951E-01
F-NORM = 1.01585E-14

5.49888E+05 3.7431BE÷04

***** ITERATION NUMBER 7 *****

THE SOLUTION TO THE FOLLONINO MATRIX EQUATION,

I 2.94591E-07 -5.66930E-13
I
I -Z.75337E+Ol -B.71117E-05
I
1 5.0S440E-01 1.1ZO43E-O5

5.40685E-13 I I Z(1) I
I I I

9.108Z4E-06 I I Z(Z] I
I I I

Z.5106ZE-05 I I Z(3J I

I-l.05879E-Z2 I
I I
I-8.21565E-15 I
I
I-1.94289E-15 I

IS Z : 5.44511E-17 9.810Z4E-11 -1.ZZZ64E-lO

ITERATION 7, X : 3.38951E-01 5.49888E+05
F-NORM = 5.16254E-15

SOLUTION CONVERGED IN 7 ITERATIONS.

X "
3.38951E-01 S.49888E+05 3. 74318E+04

Z :
5.44511E-17 9.810Z4E-II -1.22264E-10

F :
2. 6469BE-Z3 3 . 99680E-IS 1. 16573E-15

3.74318E+04

ALPHA, BEND ANGLE =
APOGEE OF INNER ORBIT =
PERIGEE OF INNER ORBIT :

ECCENTRICITY OF INNER ORBIT =
APOGEE OF OUTER ORBIT =
PERIGEE OF OUTER ORBIT =

ECCENTRICITY OF OUTER ORBIT =
SNINGBY DISTANCE =

19.4205 DEGREES,
S 4988764E+05 KM,
3 7431801E+04 KM,
0 87_5334,
B 9892445E+05 KM,
1 04ZO41BE+05 KM,
0 7922417,
Z 7638929E+04 KH.
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